Similarity Evaluation

Minh N. Le, Antske Fokkens

	rg	WS	WSS	wsr	men	toefl	ap	esslli	battig	up	mcrae	an	ansyn	ansem
	best setup on each task													
cnt	74	62	70	59	72	76	66	84	98	41	27	49	43	60
pre	84	75	80	70	80	91	75	86	99	41	28	68	71	66
best setup across tasks														
cnt	70	62	70	57	72	76	64	84	98	37	27	43	41	44
pre	83	73	78	68	80	86	71	77	98	41	26	67	69	64
	worst setup across tasks													
cnt	11	16	23	4	21	49	24	43	38	-6	-10	1	0	1
pre	74	60	73	48	68	71	65	82	88	33	20	27	40	10
						b	est se	tup on r	\overline{g}					
cnt	(74)	59	66	52	71	64	64	84	98	37	20	35	42	26
pre	(84)	71	76	64	79	85	72	84	98	39	25	66	70	61
other models														
soa	86	81	77	62	76	100	79	91	96	60	32	61	64	61
dm	82	35	60	13	42	77	76	84	94	51	29	NA	NA	NA
cw	48	48	61	38	57	56	58	61	70	28	15	11	12	9

From Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don't count, predict!

Question 1: What does it mean by $\rho=0.6$?

Values Ranks Pearson's correlation

Ordering accuracy:

$$a = a_{G,G} = \frac{1}{|G|^2} \sum_{(a,b) \in G} \sum_{(x,y) \in G} 1_{s,G}(a,b,x,y)$$

$a = \frac{1}{|G|^2} \sum_{i} \sum_{j} |g_i| |g_j| a_{g_i,g_j}$

Group	Sim.	Granularity	Pair of groups
9 ₁	0-2	0	$g_1g_1, g_2g_2, g_3g_3, g_4g_4, g_5g_5$
g_2	2-4	1	$g_1g_2, g_2g_3, g_3g_4, g_4g_5$
g_3	4-6	2	g_1g_3, g_2g_4, g_3g_5
g_4	6-8	3	9 ₁ 9 ₄ , 9 ₂ 9 ₅
95	8-10	4	$9_{1}9_{5}$

Granularity		Weight		
0	take-leave	VS	succeed-try	58%
1	spoon-cup	VS	argue-differ	30%
2	mad-glad	VS	easy-flexible	
3	certain-sure	VS	strong-proud	42%
4	easy-big	VS	formal-proper	

People can't reliably judge fine-grained difference in similarity but it is the larger part of Spearman's rho.

Spearman's p is skewed towards unreliable comparison

and a big p is not necessarily good.

Question 2: What does it mean by having a similarity of 0.2?

Levels of measurement

- Stevens, S. S. (1946). "On the Theory of Scales of Measurement". Science 103 (2684)
- Details are debatable
- Widely used in papers, books, software

Stevens' four levels

- 1. **Nominal:** categories, e.g. noun, verb, adjective, adverb
- 2. **Ordinal:** rank, e.g. 'completely agree', 'mostly agree', 'mostly disagree', 'completely disagree'
- 3. **Interval:** degree of difference, e.g. date, Celsius degree
- 4. Ratio: e.g. mass, length, duration,...

Stevens' four levels

- Later levels allow all mathematical operations of earlier levels but not vice versa
- To compute the mean of some values, they must show "degree of difference"
- We can't do so with ordinal or nominal values
- We can with interval or ratio values

Is similarity judgment interval/ratio?

- Pairs: P₁: (happy, mad) = 1, P₂: (modest, ashamed) = 2, P₃: (clothes, closet) = 3, P₄: (hand, foot) = 4
- Is the difference in similarity between P₁ and P₂ the same as the difference in similarity between P₂ and P₃?
- Do P₂ and P₄ differ twice as much as P₁ and P₂?

Similarity datasets are based on wrong assumptions and present a distorted view of similarity.

Question 3: What can we do?

