Similarity vs. Association in neural oscillatory data: expectations, hints and applications

Alessandro Lopopolo

VU Amsterdam

July 1, 2015

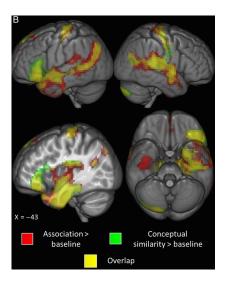
Introduction Background Previous work Methodological intermezzo Current work: Decoding relations

Goals

- Assessing the biological plausibility of the distinction between similarity and association.
- MVPA-Neural Decoding from concept to relation-wise classification.
- Brain computer interface for communication based on semantic relations.

Association vs. Similarity

- ...a working definition ...
 - Association: function of co-occurence in space, time or language [car, petrol],
 - Similarity: function of overlap of perceptual, functional, conceptual features [car,bike],
 - Neither mutually exclusive nor independent.


```
Long-term memory:
Association \rightarrow Episodic Memory
Similarity \rightarrow Semantic Memory
```

Lopopolo (VU)

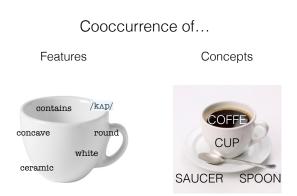
Similarity vs. Association

July 1, 2015 3 / 14

Association = Similarity (fMRI)

- 96 + 96 prime-probe pairs,
- LSA-based association score (>0.2),
- Associated pairs: score>0.2 & belonging to 2 ≠ categories (eg: living vs. artifacts or tools vs. clothing),
- Similar pairs: score<0.2 & belonging to the same category,
- Tasks: Association & Similarity judgment,
- GLM contrasts: Association judgment > letter matching & Similarity judgment > letter matching.

Jackson et al. 2014


Lopopolo (VU)

Similarity vs. Association

July 1, 2015 4 / 14

Association = Similarity (fMRI)

Jackson et al. 2014 propose a **common mechanism** underlying both Association and Similarity

Association = Similarity (fMRI)

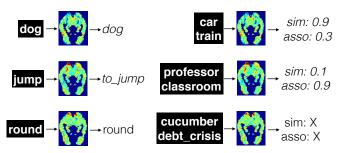
Jackson et al. 2014 assume a binary, orthogonal treatment of Association and Similarity. There are pairs that are:

- Associated pairs that are not Similar,
- Similar pairs that are not Associated.

Alternative hypothesis:

Association and Similarity are distinct dimensions processed in parallel in the same hubs, but at different time or time-frequency slots.

Lopopolo (VU)

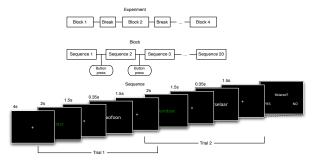

Decoding *semantic relations* from the brain

Concept-wise (Haxby):

given a stimulus —> observe activity —> guess label

Relation-wise:

given a pair of words —> observe activity —> return a binary, graded or categorial value in terms of semantic relation between within the pair


Similarity vs. Association

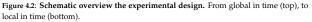

Prime		Probe					
Unrelated							
tang (pliers)	-	opbrengst (yield)					
berg (mountain)	-	drankje (small drink)					
eland (moose)	-	eerbied (respect)					
rog (ray)	-	maaier (mower)					
gesp (buckle)	-	reflectie (reflection)					
specht (woodpecker)	-	verpleger (male nurse)					
Related							
mier (ant)	-	klein (small)					
tram (tram)	-	spoor (track)					
racket (racket)	-	tennis (tennis)					
naald (needle)	-	draad (thread)					
inktvis (squid)	-	tentakel (tentacle)					
slurf (trunk)	-	olifant (elephant)					

Table 4.2: Examples of stimuli used in the experiment. Taken from the related and unrelated sets.

```
De Deyne and Storms 2008
Geuze, Farguhar and Desain 2014
```

Lopopolo (VU) Similarity vs. Association July 1, 2015 8 / 14

Geuze, Farquhar and Desain 2014

Lopopolo (VU)

Similarity vs. Association

July 1, 2015 8 / 14

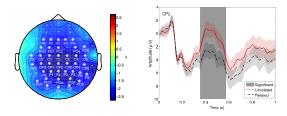


Figure 4.3: Grand average results for the negative component. Left panel: A topographic representation of the negative component between 330-600ms. The marked channels show a significant difference between related and unrelated probe responses. Right panel: ERP waveforms for channel Cz for related (black, dashed) and unrelated (red, solid). The area around each line represents the standard deviation, corrected for a within subject design (Field et al. 2012, p. 361–366). Channel Cz has been chosen as an example channel, as other significant channels are similar. Areas marked in grey show a significant difference.

Geuze, Farquhar and Desain 2014

Lopopolo (VU)

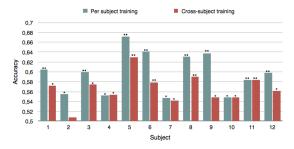


Figure 4.4: Classification accuracies for the individually trained classifier and the classifier trained across subjects. Accuracies are mean accuracies of test set performance over ten folds. (* 0.001 , ** <math>p < 0.001).

Geuze, Farquhar and Desain 2014

Lopopolo (VU)

Similarity vs. Association

July 1, 2015 8 / 14

Association vs. Similarity in EEG: trial clustering

- Exploratory approach,
- Trial: 5,35s of brain activity associated with a <prime,probe> pair,
- Pairs assigned an Association and Similarity score,
- Clustering on the time-series,
- Average Asso & Sim score per cluster.

Average scores significantly different between clusters?

Cluster on neural processing data, see if matches with significant differences in semantic scores.

Preliminary Results

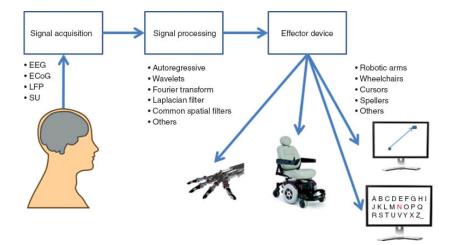
DETREND --> DOWNSAMPLE --> BANDF(12-30Hz) --> MAST

		Asso	PathSim	W&Psim	L&Csim	
-	C1:	0.0563	0.1737	0.4009	0.4487	
	C2:	0.0538	0.1488	0.3427	0.3465	
	h:	0	1	1	1	
	p:	0.7585	0.0851	0.0183	0.0530	

DETREND --> DOWNSAMPLE --> BANDF(4-7Hz) --> MAST

	Asso	PathSim	W&Psim	L&Csim
	0.0607	0.1529	0.3742	0.3734
C2:	0.0353	0.1488	0.3239	0.3274
h:	1	0	0	0
p:	0.0873	0.8957	0.2945	0.6362

Results


if that is the case:

- There is a difference between Association & Similarity in terms of neural processing.
- This difference is most probably in the time-frequency domain... and reflects work of Klimesch, Schimke and Schwaiger 1994 and of Bastiaansen and Hagoort 2006.
- Would allow a BCI to leverage two dimensions between prime and probe based on two distinct frequency bands/semantic relations.

Lopopolo (VU)

Introduction Background Previous work Methodological intermezzo Current work: Decoding relations

BCI

Similarity vs. Association

Semantic BCI

Find the word the subject is thinking about by (**prime**):

- presenting n other
 words (probes)
- decoding whether the probe is associated with the prime (binary single-trial classification on the same time slot of the N400)

Lopopolo (VU)

Similarity vs. Association

July 1, 2015 13 / 14

Introduction Background Previous work Methodological intermezzo Current work: Decoding relations

THE END

Lopopolo (VU)

Similarity vs. Association

July 1, 2015 14 / 14