Introduction 00000	State of the art 000	Replication	Error analysis 000000000	Context modelling

ULM-1 The borders of ambiguity

Marten Postma Rubén Izquierdo Piek Vossen

VU University Amsterdam

17-10-2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our $(1) \times \text{project} (14) \times \text{looks} (14) \times \text{into} (1) \times \text{breaking} (60) \times \text{the} (1) \times \text{borders} (10) \times \text{of} (1) \times \text{ambiguity,} (1) \times \text{for} (1) \times \text{which} (1) \times \text{the} (1) \times \text{queen} (12) \times \text{piece} (18) \times \text{is} (13) \times \text{an} (1) \times \text{example} (6) = 1.981.324.800 \text{ interpretations}$

Traditionally, word sense disambiguation has been defined as: "the problem of computationally determining which 'sense' of a word is activated by the use of the word in a particular context" (Agirre and Edmonds, 2006, p. 1)

Introduction ○●○○○	State of the art 000	Replication	Error analysis 000000000	Context modelling
Discourse a	nd background	d knowledge		

"The winner will walk away with \$1.5-million."

ear	Player	Country	Score	Winner's share (USS
2013	Thomas Bjørn	Denmark	268 (-20)	1,250,000
2012	Martin Kaymer	Germany	280 (-8)	1,250,000
2011	Lee Westwood (2)	+ England	273 (-15)	1,250,000
2010	Lee Westwood	+ England	271 (-17)	1,250,000
2009	Robert Allenby	Mustralia	277 (-11) ^{PO}	1,200,000
2008	Henrik Stenson	Sweden	267 (-21)	1,200,000
2007	Trevor Immelman	South Africa	272 (-16)	1,200,000
2006	Jim Furyk (2)	United States	276 (-12)	1,200,000
			80	

Discourse	knowledge a	nd background	knowledge	
Introduction 00000	State of the art	Replication	Error analysis 000000000	Context modelling

Ideally, we would extract the following facts from this quote:

- winner means "the contestant who wins the contest" (wordnet synset identifier ENG30-10782940-n)
- **2** the **winner** is the winner of the Nedbank Golf Challenge

(3) the winner was Thomas Bjørn

Introduction 00000	State of the art 000	Replication	Error analysis 000000000	Context modelling
Borders of a	ambiguity			

Lexical word sense disambiguation

Referential word sense disambiguation

Introduction ○○○○●	State of the art 000	Replication	Error analysis 00000000	Context modelling
	State of the New Context M	e Art Replication	ysis	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction 00000	State of the art ●○○	Replication	Error analysis 000000000	Context modelling
Classical a	pproaches			

- Supervised approaches (annotated data...)
- Knowledge based (too dependent on the resources)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Unsupervised approaches (low performance)

Introduction 00000	State of the art ○●○	Replication	Error analysis 000000000	Context modelling
General tre	nds			

- Looks at WSD as a purely classification problem
- Focus more on the low level mathematical algorithm than on the WSD problem itself
- Poor representation of the context, following the idea of "the more features, the better performance"

Introduction 00000	State of the art ○○●	Replication	Error analysis 000000000	Context modelling
SensEval/S	emEval			

Competition	Туре	Baseline	Best F1
SensEval2 (2001)	all-words	57.0	69.0 (Sup)
SensEval3 (2004)	all-words	60.9	65.1 (Sup)
SemEval1 (2007)	all-words (task17)	51.4	59.1 (Sup)
SemEval2 (2010)	all-words on specific do-	50.5	56.2 (Sup)
	main (task17)		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction 00000	State of the art 000	Replication	Error analysis 000000000	Context modelling
Replication				

The next step in the circle is replication and reproduction:

- important step
- Ø difficult
- helps gain important insights into how other systems work and perform

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000 State of the art 000 Replication Fror analysis 0000000 Context modelling 0000000 Context modelling 000000 Context modelling

"One of the best moves by Gary Kasparov which includes a **queen** sacrifice..."

source: http://www.chess.com/forum/view/chess-players/ kasparov-queen-sacrifice

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction 00000	State of the art 000	Replication	Error analysis ○●○○○○○○○	Context modelling
The role of	background k	nowledge		

Output of the It-Makes-Sense System (Zhong and Ng, 2010) One of the best moves by Gary Kasparov which includes a **queen** sacrifice

• 36% queen.n.1: the only fertile female in a colony of social insects such as bees and ants and termites; its function is to lay eggs

- 34% queen.n.2: a female sovereign ruler
- 30% queen.n.3: the wife or widow of a king
- ...
- 0% queen.n.6: the most powerful chess piece

Example of how to use background knowledge to solve wsd:

- compare textual overlap of wiki pages Queen_(chess) and Queen_regnant to wiki page of Garry_Kasparov.
- I70 types overlapped for Queen_(chess) and only 88 for Queen_regnant

Examples of matching words

board openings matches game press championship rules chess player king queen

To provide evidence for our hypothesis (poor context modelling), we started doing error analysis on the single outputs of the participants of SensEval and SemEval, paying special attention to:

- Which cases/words/contexts are the most difficult (the most systems fail) and why
- Correlations between linguistic profile of a token (type, polysemy, length of the sentence...) and the performance of the systems on that token
 - Is there any correlation between the polysemy of a word and the performance of the systems?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 00000	State of the art 000	Replication	Error analysis	Context modelling
Error Anal	vsis on Sens	Eval-2		

- Errors on monosemous words due to pos-tagger
 - + 504 occurrences of monosemous words \rightarrow 33.3% systems are wrong
 - ... through a **chance** accident in cell division
 - Correct is the sense 1 as ADJECTIVE and all systems assign senses of NOUN
- Errors because of multiwords and phrasal verbs
 - 45 occurrences of multiwords or phrasal verbs, avg error rate 71%
 - Will Quinlan had not inherited a damaged retinoblastoma **supressor gene** and , therefore , faced no more risk...
 - Systems provide anwers for gene and not for supressor_gene

Introduction 00000	State of the art	Replication	Error analysis	Context modelling
Error ana	lysis on Sens	-val-2		

- The more polysemous words are those with higher error rate
 - make.v 13 occurences, 49 senses \rightarrow 96% error rate
 - $\bullet~form.n$ 4 ocurrences, 16 senses \rightarrow 100% error rate
- Systems too skewed towards assigning always the most frequent sense (sense 1)
 - 799 tokens where the correct sense is not the most frequent one, in 84% of the cases the systems still assign the most frequent sense
 - In fact one of our goals is to detect and fix the cases where the correct meaning is not the most frequent one

Introduction 00000	State of the art 000	Replication	Error analysis ○○○○○○●○○	Context modelling
Error analys	is on SensEva	I-2		

- The context is not modelled/exploited properly
 - Occurrences of the same word in different contexts have similar error rate
 - The difficulty of a word depends more on the word itself than on the context where it appears

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction 00000	State of the art 000	Replication	Error analysis	Context modelling
Error analys	sis on SensEva	al-2		

church.n

- The parishioners of *St. Michael* and *All Angels* stop to chat at the **church** door, as members here always have. (4.25 avg polysemy, 22 tokens, 81% error rate)
- A look at a Thursday night practice at *St. Mary Abbot* **church** in the Kensington district of London gives an idea of the work involved (8.6 avg polysemy, 26 tokens, 81% error rate)
- The oldest bell-ringing group in the country, the Ancient Society of College Youths, founded in 1637, remains male-only, a fact that 's particularly galling to women because the group is the sole source of ringers for Britain 's most prestigious **churches**, *St. Paul 's Cathedral* and *Westminster Abbey*. (3.1 avg polysemy, 54 tokens, 85% error)

Introduction 00000	State of the art 000	Replication	Error analysis ○○○○○○○●	Context modelling
Error analys	sis on SensEva	ıl-2		

$\textbf{new.a} \rightarrow 11 \text{ senses}$

 \bullet Sentence with avg. polysemy 5.5 and 14 tokens \rightarrow 90.5%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \bullet Sentence with avg. polysemy 5 and 39 tokens \rightarrow 95.5%

Introduction	State of the art	Replication	Error analysis	Context modelling
00000	000		000000000	○●○○○○
SemEval 20	015			

SemEval: is an ongoing series of evaluations of computational semantic analysis systems
SemEval-2015 Task 13: Multilingual All-Words Sense
Disambiguation and Entity Linking

The European Medicines Agency is a European Union agency for the evaluation of medicinal products.

Introduction	State of the art	Replication	Error analysis	Context modelling
00000	000		000000000	○○○○●○
SemEval 20	15			

- Obtain all possible entities ranked by confidence (NewsReader NERC and NED)
- Obtain all possible senses ranked by confidence (it_makes_sense system, UKB...)
- Obtain coreference sets (Newsreader coreference tool)
- Obtain discourse and background information from these 2 sources to decide on the final entities and meanings

Introduction	State of the art	Replication	Error analysis	Context modelling
				00000

Thank you! Questions?